On the Best Constant in the Moser-Onofri-Aubin Inequality
نویسندگان
چکیده
منابع مشابه
On the Best Constant in the Moser-Onofri-Aubin Inequality
Let S2 be the 2-dimensional unit sphere and let Jα denote the nonlinear functional on the Sobolev space H1,2(S2) defined by Jα(u) = α 4 ∫
متن کاملOn a Sharp Moser-aubin-onofri Inequality for Functions on S2 with Symmetry
Here dw denotes the Lebesgue measure on the unit sphere, normalized to make ∫ S2 dw = 1. The famous Moser-Trudinger inequality says that J1 is bounded below by a non-positive constant C1. Later Onofri [6] showed that C1 can be taken to be 0. (Another proof was also given by OsgoodPhillips-Sarnack [7].) On the other hand, if we restrict Jα to the class of G of functions g for which e2g has centr...
متن کاملBest Constant in Sobolev Inequality
The equality sign holds in (1) i] u has the Jorm: (3) u(x) = [a + btxI,~',-'] 1-~1~ , where Ix[ = (x~ @ ...-~x~) 1⁄2 and a, b are positive constants. Sobolev inequalities, also called Sobolev imbedding theorems, are very popular among writers in part ial differential equations or in the calculus of variations, and have been investigated by a great number of authors. Nevertheless there is a ques...
متن کاملthe effects of changing roughness on the flow structure in the bends
flow in natural river bends is a complex and turbulent phenomenon which affects the scour and sedimentations and causes an irregular bed topography on the bed. for the reason, the flow hydralics and the parameters which affect the flow to be studied and understand. in this study the effect of bed and wall roughness using the software fluent discussed in a sharp 90-degree flume bend with 40.3cm ...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2010
ISSN: 0010-3616,1432-0916
DOI: 10.1007/s00220-010-1079-7